Perspectives in ruminant protein efficiency, recycling, and amino acids

Evan Titgemeyer Kansas State University

KANSAS STATE

Topics for today

Urea recycling

Should I add urea to the diet?

<u>Amino acid requirements</u>
Should be believe the NRC?

KANSAS STATE

Decreasing dietary CP

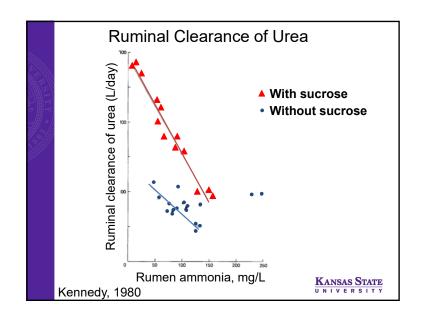
Reproduction, diet cost, environment

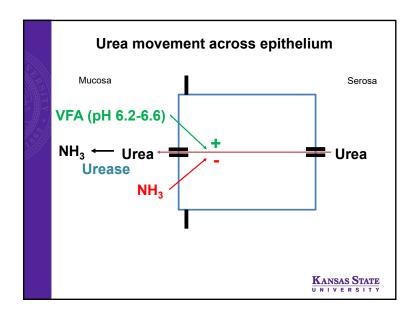
Still meet MP requirement?

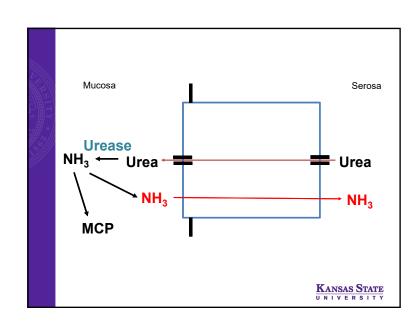
- Increase RUP
- Supplement AA

But, are the bacterial happy?

KANSAS STATE

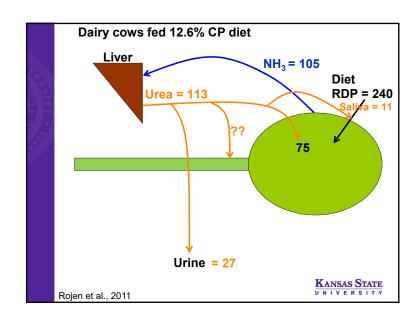

Predicting RDP requirements


Estimate MCP (microbial protein)
Estimate efficiency of N capture
RAN requirement = MCP ÷ efficiency


RAN supply = RDP + recycled urea

(MCP = Microbial Crude Protein)

(RAN = Ruminally Available N)



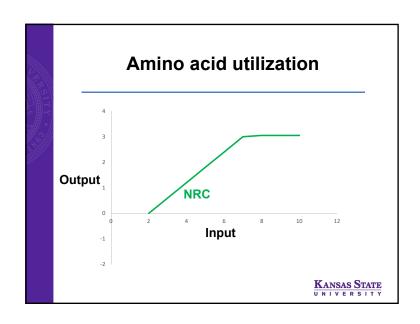
	Lactating dairy cattle				
		Urea supplementation (% of DM)			
A L L		0	0.4	0.8	
	Diet CP, %	12.6	13.7	14.9	
	DMI, kg/d	18.1	18.9	19.0	
	Milk, kg/d	32.7	33.8	34.0	
	Milk protein, kg/d	0.90	0.94	0.96	
	Rumen NH ₃ , mM	3.8	6.2	8.2	
	PUN, mM	3.3	5.5	7.8	
	Rojen et al., 2011			KANSAS STATE	

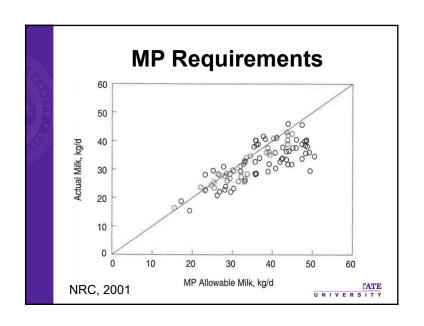
	Urea supplementation (% of DM)			
Nitrogen	0	0.4	0.8	
N Intake, g/d	366	416	457	
Urea				
Production, g/d	113	174	186	
Recycled, g/d	75	104	96	
Salivary, g/d	11	16	0	
Recycled, %	66	60	52	

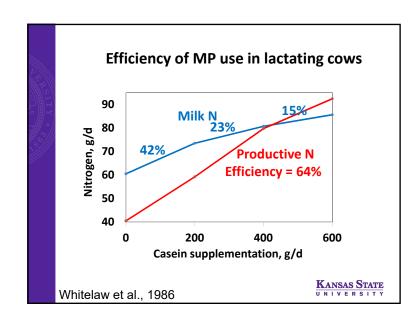
How do we use this information?

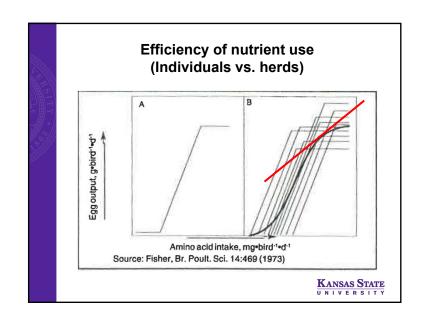
Target optimal supply of RAN:

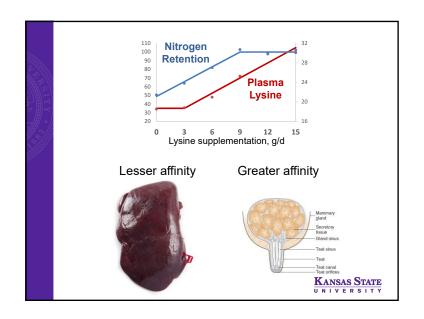
- If we know MCP and ruminally recycled urea, then we can calculate the necessary RDP

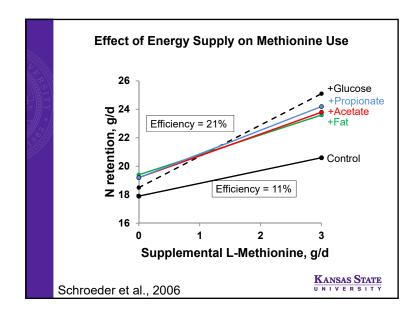

My perspective:

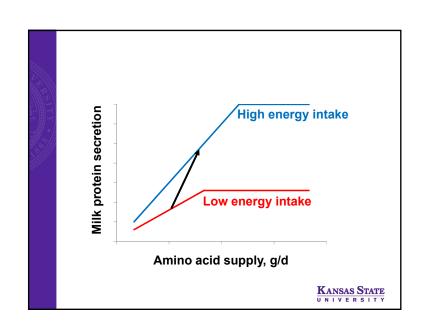

- For most lactation diets, deficiencies in RAN are unlikely to exist and certainly not likely to be severe


KANSAS STATE


MP Requirements

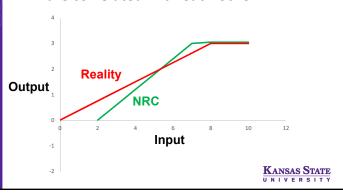

- NRC (2001) MP requirement =
 maintenance + milk protein/0.67
- Estimate of efficiency is key!
- Efficiency < 0.67
- Efficiency not constant, at least for a herd





AA Requirements

Efficiency of AA use isn't static


- Energy effects
- AA role as anabolic stimulus

MP Requirements

 Estimates of maintenance and efficiency are correlated with each other

Efficiency of use varies among AA

Average efficiency of AA utilization for growth

- Methionine = 26% (11 trials)
- Leucine = 38% (4 trials)
- Histidine = 64% (2 trials)
- Lysine = 47% (3 trials)

KANSAS STATE

AA Requirements

Why hasn't the 0.67 efficiency ruined the dairy industry?

- No one uses it as gospel
- Overestimated maintenance requirement balances the underestimated efficiency
- MP supply correlated to energy supply
- We work over a fairly narrow range

KANSAS STATE

AA Requirements

We have a lot to learn!

- Empirical observations of responses to methionine and lysine are useful in predicting times to supplement
- At some point, perhaps in 10-15 years, we'll have answers on some other amino acids